Passivhaus Dachgeschossausbau: Unterschied zwischen den Versionen

Aus RosolarWiki
Martin Schaub (Diskussion | Beiträge)
Keine Bearbeitungszusammenfassung
 
(32 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
== Übersicht ==
== Übersicht ==
Der erste Bauabschnitt der Hauptschule Großkarolinenfeld umfasst mehrere Klassenräume, Verwaltungsräumen sowie eine Turnhalle und  wurde 1981 ohne Unterkellerung errichtet. Beheizt wurde dieser mit einer Stromheizung.  
Das Dachgeschoss der Volkshochschule wurde im Jahr 2008 ausgebaut. Die jährlich anfallenden Betriebskosten der Stadt Bad Aibling für die Gebäudebeheizung konnten durch die Sanierungsmaßnahmen deutlich gesenkt werden. Der Energiebedarf für die Heizung reduzierte sich durch den gezielten Einsatz von Passivhauskomponenten auf ca. 25 % des damals gängigen EnEV-Standards (2007).  
Aus umwelt- und energiepolitischen Gründen macht Strom als Heizenergieträger jedoch wenig Sinn, denn 2/3 der Energie, die im Kraftwerk zur Stromerzeugung benötigt werden, gehen verloren. Nur 1/3 des Aufwandes zur Stromerzeugung kann man nutzen ([[Energieeffizienz]]). Deshalb sind die Kosten für das Heizen mit Strom relativ hoch. Durch die vorgenommenen energetischen Sanierungsmaßnahmen konnte der Jahres-Primärenegiebedarf des ersten Bauabschnitts um ca. 80 % gesenkt werden.


<gallery>
[[Datei:VHS-AIB.jpg|thumb|Volkshochschule Bad Aibling]]
Datei:Bild noch einfügen.jpg|Volkshochschule Bad Aibling, Vergleich Bestand zu Modernisierung
 
Datei:Bild noch einfügen.jpg|Volkshochschule Bad Aibling, Energie-Verbrauch und -Kosten
[[Datei:VHS_Energiekennzahlen.jpg|thumb|Volkshochschule Bad Aibling, Energieverbrauch im Vergleich]]
</gallery>
 
[[Datei:VHS-Wirtschaftlichkeitsanalyse.jpg|thumb|Volkshochschule Bad Aibling, Wirtschaftlichkeitsanalyse]]


== Standort ==
== Standort ==
Zeile 14: Zeile 14:
== Eckdaten ==
== Eckdaten ==


Das viergeschossige Gebäude wurde im Jahr 1989 von der Stadt Bad Aibling für die städtische Volkshochschule umgebaut, die das Erd- und 1. Obergeschoss seitdem nutzt. Im 2. Oberge-schoss ist eine Einrichtung für die kindliche Frühförderung untergebracht. Das Dachgeschoss war für einen Ausbau vorbereitet, stand aber leer. Die Decke über dem 2. Obergeschoss zum unbeheizten Dachspeicher wurde bei den früher durchgeführten Umbauarbeiten des damaligen Eigentümers (Stadtwerke Bad Aibling) nicht gedämmt.
Das viergeschossige Gebäude wurde im Jahr 1989 von der Stadt Bad Aibling für die städtische Volkshochschule umgebaut, die das Erd- und 1. Obergeschoss seitdem nutzt. Im 2. Obergeschoss ist eine Einrichtung für die kindliche Frühförderung untergebracht. Das Dachgeschoss war für einen Ausbau vorbereitet, stand aber leer. Die Decke über dem 2. Obergeschoss zum unbeheizten Dachspeicher wurde bei den früher durchgeführten Umbauarbeiten des damaligen Eigentümers (Stadtwerke Bad Aibling) nicht gedämmt.
Im Gegensatz zur ursprünglichen Planung mit Büros sollten nun Räume für die Musikschule Bad Aibling und eine Einrichtung zur Förderung von Jugendlichen ohne Leerstelle im Dachge-schoss geschaffen werden.
Im Gegensatz zur ursprünglichen Planung mit Büros sollten nun Räume für die Musikschule Bad Aibling und eine Einrichtung zur Förderung von Jugendlichen ohne Lehrstelle im Dachgeschoss geschaffen werden.


* Konstruktion Bestandsgebäude: Mischkonstruktion Stahlbeton-/ Mauerwerksbau
* Konstruktion Bestandsgebäude: Mischkonstruktion Stahlbeton- / Mauerwerksbau
* Nutzfläche Dachgeschoss: 306 m²  
* Nutzfläche Dachgeschoss: 306 m²  
* Lüftung: mechanisch, automatisch geregelte Lüftungsanlage
* Lüftung: Lüftungsanlage mit Wärmerückgewinnung und Wärmepumpe zur Heiz- / Kühlunterstützung
* Heizung: Biomasseheizkessel (Pellets/Hackschnitzel) als Ergänzung zum bestehenden Heizölkessel
* Heizung: Gasbrennwert-Kessel (Erdgas) mit Platten-Heizkörpern
* '''Jahres-Primärenergiebedarf''' des ersten Bauabschnitts im Bestand: '''737''' kWh/m²a Wohn-/Nutzfläche für Heizung, Warmwasser, Hilfs- und Haushaltsstrom berechnet nach PHPP
* '''Jahres-Primärenergiebedarf''' des Dachgeschossausbaus nach EnEV- Standard 2007 : ca. '''140''' kWh/m² a Wohn-/Nutzfläche für Heizung, berechnet nach PHPP
* '''Jahres-Primärenergiebedarf''' des ersten Bauabschnitts '''nach der Sanierung''': '''129''' kWh/m²a Wohn-/Nutzfläche für Heizung, Warmwasser, Hilfs- und Haushaltsstrom berechnet nach PHPP
* '''Jahres-Primärenergiebedarf''' des Dachgeschossausbaus nach der Sanierung: ca. '''24''' kWh/m² a Wohn-/Nutzfläche für Heizung, berechnet nach PHPP
* Kosten: ca. 730,- €/m²   
* Kosten: ca. 730,- €/m²   
* Baujahr: 1970
* Baujahr: 1970
* Energetische Sanierung des Dachgeschoss: 2008
* Energetische Sanierung des Dachgeschosses: 2008


== Zielsetzung ==
== Zielsetzung ==


Im Auftrag der Stadt Bad Aibling wurde für das gesamte Gebäude ein Energiebedarfsausweis erarbeitet. In diesem Zusammenhang wurde im Rahmen einer Energieberatung untersucht, durch welche energetische Maßnahmen beim Ausbau des Dachgeschosses Einsparpotential gegenüber einem Ausbau mit üblichen Energiestandard besteht.
Im Auftrag der Stadt Bad Aibling wurde für das gesamte Gebäude ein Energiebedarfsausweis erarbeitet. In diesem Zusammenhang wurde im Rahmen einer Energieberatung untersucht, durch welche energetische Maßnahmen beim Ausbau des Dachgeschosses Einsparpotential gegenüber einem Ausbau mit üblichen Energiestandards besteht.


== Entstehungsgeschichte ==
== Entstehungsgeschichte ==


Der Dachgeschossausbau sollte im Wesentlichen in Trockenbauweise ausgeführt werden. Der Einbau von dickeren Dämmschichten bedeutet also im Grunde nur erhöhte Materialkosten, da die Einbaukosten sich nicht erhöhen. Auch führen Fensterelemente mit 3- fach Wärme- schutzverglasung nicht mehr zu deutlichen Mehrkosten.  
Der Dachgeschossausbau sollte im Wesentlichen in Trockenbauweise ausgeführt werden. Der Einbau von dickeren Dämmschichten bedeutet also im Grunde nur erhöhte Materialkosten, da sich die Einbaukosten nicht erhöhen. Auch führen Fensterelemente mit 3- fach Wärmeschutzverglasung nicht mehr zu deutlichen Mehrkosten.  


Zahlreiche Studien der letzten Jahre belegen es: Die Luftqualität in Schulungsräumen ist wäh-rend der Heizperiode meist mangelhaft. Die „schlechte Luft“ ist nicht etwa durch einen Mangel an Sauerstoff bedingt (wie umgangssprachlich oft vermutet wird), sondern durch einen erhöh-ten CO2-Gehalt der Raumluft. Dieser wirkt sich oberhalb eines Schwellenwertes zunehmend negativ auf das Konzentrationsvermögen und die Leistungsfähigkeit der Schülerinnen und Schüler (und auch der Lehrkräfte) aus. Eine Fensterlüftung wird meist nur unzureichend durch-geführt, oft auch im Form von gekippten Fenstern, was lüftungstechnisch unzulänglich und im Hinblick auf Energieverluste äußerst nachteilig ist. Daher ist es nicht überraschend, dass eine Überschreitung der Grenzwerte um ein Vielfaches (!) eher die Regel als die Ausnahme ist.
Zahlreiche Studien der letzten Jahre belegen, dass die Luftqualität in Schulungsräumen während der Heizperiode meist mangelhaft ist. Die „schlechte Luft“ ist nicht etwa durch einen Mangel an Sauerstoff bedingt (wie umgangssprachlich oft vermutet wird), sondern durch einen erhöhten CO2-Gehalt der Raumluft. Dieser wirkt sich oberhalb eines Schwellenwertes zunehmend negativ auf das Konzentrationsvermögen und die Leistungsfähigkeit der Schüler und der Lehrkräfte aus. Eine Fensterlüftung wird von den Nutzern meist nur unzureichend durchgeführt, oft auch im Form von gekippten Fenstern, was lüftungstechnisch unzulänglich und im Hinblick auf Energieverluste äußerst nachteilig ist. Daher ist es nicht überraschend, dass eine Überschreitung der Grenzwerte um ein Vielfaches (!) eher die Regel als die Ausnahme ist.


Die beste Lösung des Problems ist die Ausrüstung von Schulgebäuden u.ä. mit mechanischen Lüftungsanlagen. Moderne Anlagen mit bedarfsabhängiger Regelung und hochwertiger Wär-merückgewinnung arbeiten hocheffizient und gewährleisten nicht nur gute Raumluftqualität, sondern können auch erheblich zur Energieeinsparung und damit zum Klimaschutz beitragen.  
Die beste Lösung des Problems ist die Ausrüstung der Schulungsgebäude mit mechanischen Lüftungsanlagen. Moderne Anlagen mit bedarfsabhängiger Regelung und hochwertiger Wärmerückgewinnung arbeiten hocheffizient und gewährleisten nicht nur gute Raumluftqualität, sondern können auch erheblich zur Energieeinsparung und damit zum Klimaschutz beitragen.  
Eine luftdichte Gebäudehülle sowie eine Komfort-Lüftungsanlage mit Wärmerückgewinnung sind wesentliche Bestandteile des Passivhaus- Standards. Beide Komponenten wurden vom Bauherrn gewünscht. 
Eine luftdichte Gebäudehülle sowie eine Komfort-Lüftungsanlage mit Wärmerückgewinnung sind wesentliche Bestandteile des Passivhaus-Standards.  




Dachgeschossausbau mit Passivhaus-Komponenten:
Dachgeschossausbau mit Passivhaus-Komponenten:
* Gebäudehülle:
* Gebäudehülle: Außenwand Ziegel mit WDVS (U= 0,22 W/(m²K), Dachschrägen (U= 0,14 W/(m²K), Flachdach zum Treppenhaus (U= 0,14 W/(m²K), Decke zum unbeheizten Dachspeicher (U= 0,11 W/(m²K), Fenster Kunststoff mit 3-fach Glas mit Fensterstöcke mit überdämmten Alu-Dämmpaneelen (U= 0,08 W/(m²K), Haustür Holz (U= 1,00 W/(m²K)
Außenwand Ziegel mit WDVS, innenseitig zusätzlich gedämmt mit Mineralwolle WLG 035, d= 5 cm plus Gipskartonbeplankung, U= 0,22 W/(m²K)
Dachschrägen U= 0,14 W/(m²K)
Flachdach zum Treppenhaus U= 0,14 W/(m²K)
Decke zum unbeheizten Dachspeicher U= 0,11 W/(m²K)
Fenster Kunststoff mit 3-fach Glas, Fensterstöcke außen mit Alu-Dämmpaneelen überdämmt, U= 0,08 W/(m²K)
Haustür Holz U= 1,00 W/(m²K)
* Sonnenschutz: Sonnenschutzglas in Fensterelementen
* Sonnenschutz: Sonnenschutzglas in Fensterelementen
* Treppenhäuser: Die beiden Treppenhäuser sind beheizt. Deshalb stellen die an diese
* Treppenhäuser: Die beiden Treppenhäuser sind beheizt. Deshalb stellen die an diese angrenzenden Wand- und Türflächen keine Wärmeverlustflächen dar.
angrenzenden Wand- und Türflächen keine Wärmeverlustflächen dar.
* Heizung: Gas- Brennwerttherme (Erdgas) für Heizung und Warmwasser; Wärmeverteilung über Plattenheizkörper in den Räumen.
* Heizung: Gas- Brennwerttherme (Erdgas) für Heizung und Warmwasser;  
* Warmwasser: Die Trinkwassererwärmung ist in spezifischer Relavanz über elektrische dezentrale Wassererhitzer hygienetechnisch optimal und effizient gelöst.
Wärmeverteilung über Plattenheizkörper in den Räumen.
* Lüftung: Es wurde eine hocheffiziente kontrollierte Be- und Entlüftung mit Wärmerückgewinnung in Kombination mit einer kompakten Luftwärmepumpe realisiert, die gleichzeitig die Grundlast der Wärmeerzeugung und auch Kühllast teilweise übernimmt. Um die Betriebseffizienz weiter zu optimieren ist die Lüftungssteuerung über CO2 – Sensoren in den Referenzräumen positioniert und lastabhängig geschalten. Für die  Wärmespitzenlastabdeckung und für sporadische Heizanforderungen dient die konventionelle Gasbrennwertheizung über Heizkörper als Wärmeüberträger. Somit sind Hygiene- sowie Effizienz- und Komfortansprüche gleichermaßen hervorragend erfüllt.
* Warmwasser: Die Trinkwassererwärmung ist in spezifischer Relavanz über  
elektrische dezentrale Wassererhitzer hygienetechnisch optimal und  
effizient gelöst .
* Lüftung: Es wurde eine hocheffiziente kontrollierte Be- und Entlüftung mit Wärmerückgewinnung in Kombination mit einer kompakten Luftwär-mepumpe realisiert, die gleichzeitig die Grundlast der Wärmeerzeu-gung und auch Kühllast teilw. übernimmt. Um die Betriebseffizienz weiter zu optimieren ist die Lüftungssteuerung über CO2 – Sensoren in den Referenzräumen positioniert und lastabhängig geschalten. Für die  Wärme- Spitzenlastabdeckung und für sporadische Heizanforde-rungen dient die konventionelle Gasbrennwertheizung über Heiz-körper als Wärmeüberträger. Somit sind Hygiene- wie Effizienz- und Komfortansprüche gleicher-maßen hervorragend erfüllt.  


== Projektergebnis ==
== Projektergebnis ==


Wenn das Dachgeschoss wie üblich nach EnEV- Standard 2007 ausgebaut worden wäre, hätte der Endenergiebedarf bei ca. 140 kWh/m²a betragen.
Wenn das Dachgeschoss wie üblich nach EnEV-Standard 2007 ausgebaut worden wäre, hätte der Endenergiebedarf ca. 140 kWh/m²a betragen.


Mit dem Passivhaus- Projektierungsprogramm (PHPP) wurde ein Energiekennwert Heizwärme für den Dachgeschossausbau von 24 kWh/m²a berechnet. In diesem Zusammenhang wurden auch die Wärmebrücken, insbesondere die Anschlüsse an das Bestandsgebäude, detailliert berechnet. Der Passivhaus-Standard liegt bei 15 kWh/m²a.  
Mit dem Passivhaus-Projektierungsprogramm (PHPP) wurde ein Energiekennwert Heizwärme für den Dachgeschossausbau von 24 kWh/m²a berechnet. In diesem Zusammenhang wurden auch die Wärmebrücken, insbesondere die Anschlüsse an das Bestandsgebäude, detailliert berechnet. Der Passivhaus-Standard liegt bei 15 kWh/m²a.  
Der Primärenergiebedarf für Heizung und  Warmwasserbereitung des Dachgeschosses der Volkshochschule Bad Aibling im ausgebauten Zustand liegt jetzt bei etwa 34 kWh/m²a.
Der Primärenergiebedarf für Heizung und  Warmwasserbereitung des Dachgeschosses der Volkshochschule Bad Aibling im ausgebauten Zustand liegt jetzt bei etwa 34 kWh/m²a.


== Akteure ==
== Akteure ==


* [[Martin Schaub]]
* [[Martin Schaub, Dipl.-Ing. Architekt + Energieberater]], [[Großkarolinenfeld]]


== Beteiligte Firmen ==
== Beteiligte Firmen ==


;Planung und Bauleitung
;Planung und Bauleitung
: [[Martin Schaub, Dipl.-Ing. Architekt + Energieberater (BAFA)]]
: [[Martin Schaub, Dipl.-Ing. Architekt + Energieberater]]


;Heizung, Lüftung und Sanitär
;Heizung, Lüftung und Sanitär
Zeile 82: Zeile 72:


;Blower-Door-Test
;Blower-Door-Test
: [[Rainer Kutzner, Dipl.-Ing. (FH)]], [[Riedering]]
: [[Rainer Kutzner]], [[Riedering]]
 
;Elektro
: Micheal Weber, [[Tuntenhausen]]


;Energieberatung
;Energieberatung
: [[Martin Schaub, Dipl.-Ing. Architekt + Energieberater (BAFA)]]  
: [[Martin Schaub, Dipl.-Ing. Architekt + Energieberater]]


== Weblinks ==
== Weblinks ==


* [[Wikipedia:Passivhaus]]
* [[Wikipedia:Passivhaus]]
* [http://www.architekt-schaub.de/projekte/umbau-modernisierung/umbauten-und-modernisierungen-58.html]
''


[[Kategorie:Projekt]]
[[Kategorie:Projekt]]

Aktuelle Version vom 23. August 2020, 11:04 Uhr

Übersicht

Das Dachgeschoss der Volkshochschule wurde im Jahr 2008 ausgebaut. Die jährlich anfallenden Betriebskosten der Stadt Bad Aibling für die Gebäudebeheizung konnten durch die Sanierungsmaßnahmen deutlich gesenkt werden. Der Energiebedarf für die Heizung reduzierte sich durch den gezielten Einsatz von Passivhauskomponenten auf ca. 25 % des damals gängigen EnEV-Standards (2007).

Volkshochschule Bad Aibling
Volkshochschule Bad Aibling, Energieverbrauch im Vergleich
Volkshochschule Bad Aibling, Wirtschaftlichkeitsanalyse

Standort

Heubergstraße 2, Gemeinde Bad Aibling

Eckdaten

Das viergeschossige Gebäude wurde im Jahr 1989 von der Stadt Bad Aibling für die städtische Volkshochschule umgebaut, die das Erd- und 1. Obergeschoss seitdem nutzt. Im 2. Obergeschoss ist eine Einrichtung für die kindliche Frühförderung untergebracht. Das Dachgeschoss war für einen Ausbau vorbereitet, stand aber leer. Die Decke über dem 2. Obergeschoss zum unbeheizten Dachspeicher wurde bei den früher durchgeführten Umbauarbeiten des damaligen Eigentümers (Stadtwerke Bad Aibling) nicht gedämmt. Im Gegensatz zur ursprünglichen Planung mit Büros sollten nun Räume für die Musikschule Bad Aibling und eine Einrichtung zur Förderung von Jugendlichen ohne Lehrstelle im Dachgeschoss geschaffen werden.

  • Konstruktion Bestandsgebäude: Mischkonstruktion Stahlbeton- / Mauerwerksbau
  • Nutzfläche Dachgeschoss: 306 m²
  • Lüftung: Lüftungsanlage mit Wärmerückgewinnung und Wärmepumpe zur Heiz- / Kühlunterstützung
  • Heizung: Gasbrennwert-Kessel (Erdgas) mit Platten-Heizkörpern
  • Jahres-Primärenergiebedarf des Dachgeschossausbaus nach EnEV- Standard 2007 : ca. 140 kWh/m² a Wohn-/Nutzfläche für Heizung, berechnet nach PHPP
  • Jahres-Primärenergiebedarf des Dachgeschossausbaus nach der Sanierung: ca. 24 kWh/m² a Wohn-/Nutzfläche für Heizung, berechnet nach PHPP
  • Kosten: ca. 730,- €/m²
  • Baujahr: 1970
  • Energetische Sanierung des Dachgeschosses: 2008

Zielsetzung

Im Auftrag der Stadt Bad Aibling wurde für das gesamte Gebäude ein Energiebedarfsausweis erarbeitet. In diesem Zusammenhang wurde im Rahmen einer Energieberatung untersucht, durch welche energetische Maßnahmen beim Ausbau des Dachgeschosses Einsparpotential gegenüber einem Ausbau mit üblichen Energiestandards besteht.

Entstehungsgeschichte

Der Dachgeschossausbau sollte im Wesentlichen in Trockenbauweise ausgeführt werden. Der Einbau von dickeren Dämmschichten bedeutet also im Grunde nur erhöhte Materialkosten, da sich die Einbaukosten nicht erhöhen. Auch führen Fensterelemente mit 3- fach Wärmeschutzverglasung nicht mehr zu deutlichen Mehrkosten.

Zahlreiche Studien der letzten Jahre belegen, dass die Luftqualität in Schulungsräumen während der Heizperiode meist mangelhaft ist. Die „schlechte Luft“ ist nicht etwa durch einen Mangel an Sauerstoff bedingt (wie umgangssprachlich oft vermutet wird), sondern durch einen erhöhten CO2-Gehalt der Raumluft. Dieser wirkt sich oberhalb eines Schwellenwertes zunehmend negativ auf das Konzentrationsvermögen und die Leistungsfähigkeit der Schüler und der Lehrkräfte aus. Eine Fensterlüftung wird von den Nutzern meist nur unzureichend durchgeführt, oft auch im Form von gekippten Fenstern, was lüftungstechnisch unzulänglich und im Hinblick auf Energieverluste äußerst nachteilig ist. Daher ist es nicht überraschend, dass eine Überschreitung der Grenzwerte um ein Vielfaches (!) eher die Regel als die Ausnahme ist.

Die beste Lösung des Problems ist die Ausrüstung der Schulungsgebäude mit mechanischen Lüftungsanlagen. Moderne Anlagen mit bedarfsabhängiger Regelung und hochwertiger Wärmerückgewinnung arbeiten hocheffizient und gewährleisten nicht nur gute Raumluftqualität, sondern können auch erheblich zur Energieeinsparung und damit zum Klimaschutz beitragen. Eine luftdichte Gebäudehülle sowie eine Komfort-Lüftungsanlage mit Wärmerückgewinnung sind wesentliche Bestandteile des Passivhaus-Standards.


Dachgeschossausbau mit Passivhaus-Komponenten:

  • Gebäudehülle: Außenwand Ziegel mit WDVS (U= 0,22 W/(m²K), Dachschrägen (U= 0,14 W/(m²K), Flachdach zum Treppenhaus (U= 0,14 W/(m²K), Decke zum unbeheizten Dachspeicher (U= 0,11 W/(m²K), Fenster Kunststoff mit 3-fach Glas mit Fensterstöcke mit überdämmten Alu-Dämmpaneelen (U= 0,08 W/(m²K), Haustür Holz (U= 1,00 W/(m²K)
  • Sonnenschutz: Sonnenschutzglas in Fensterelementen
  • Treppenhäuser: Die beiden Treppenhäuser sind beheizt. Deshalb stellen die an diese angrenzenden Wand- und Türflächen keine Wärmeverlustflächen dar.
  • Heizung: Gas- Brennwerttherme (Erdgas) für Heizung und Warmwasser; Wärmeverteilung über Plattenheizkörper in den Räumen.
  • Warmwasser: Die Trinkwassererwärmung ist in spezifischer Relavanz über elektrische dezentrale Wassererhitzer hygienetechnisch optimal und effizient gelöst.
  • Lüftung: Es wurde eine hocheffiziente kontrollierte Be- und Entlüftung mit Wärmerückgewinnung in Kombination mit einer kompakten Luftwärmepumpe realisiert, die gleichzeitig die Grundlast der Wärmeerzeugung und auch Kühllast teilweise übernimmt. Um die Betriebseffizienz weiter zu optimieren ist die Lüftungssteuerung über CO2 – Sensoren in den Referenzräumen positioniert und lastabhängig geschalten. Für die Wärmespitzenlastabdeckung und für sporadische Heizanforderungen dient die konventionelle Gasbrennwertheizung über Heizkörper als Wärmeüberträger. Somit sind Hygiene- sowie Effizienz- und Komfortansprüche gleichermaßen hervorragend erfüllt.

Projektergebnis

Wenn das Dachgeschoss wie üblich nach EnEV-Standard 2007 ausgebaut worden wäre, hätte der Endenergiebedarf ca. 140 kWh/m²a betragen.

Mit dem Passivhaus-Projektierungsprogramm (PHPP) wurde ein Energiekennwert Heizwärme für den Dachgeschossausbau von 24 kWh/m²a berechnet. In diesem Zusammenhang wurden auch die Wärmebrücken, insbesondere die Anschlüsse an das Bestandsgebäude, detailliert berechnet. Der Passivhaus-Standard liegt bei 15 kWh/m²a. Der Primärenergiebedarf für Heizung und Warmwasserbereitung des Dachgeschosses der Volkshochschule Bad Aibling im ausgebauten Zustand liegt jetzt bei etwa 34 kWh/m²a.

Akteure

Beteiligte Firmen

Planung und Bauleitung
Martin Schaub, Dipl.-Ing. Architekt + Energieberater
Heizung, Lüftung und Sanitär
Ing.-Büro Scheerer TGA, Bad Reichenhall
SiGeKo
Stefan Rossteuscher, Dipl.-Ing. Architekt, Bad Aibling
Blower-Door-Test
Rainer Kutzner, Riedering
Energieberatung
Martin Schaub, Dipl.-Ing. Architekt + Energieberater

Weblinks